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1 EXECUTIVE SUMMARY 

Officials at all levels of government understand the importance of adequate planning for and responding to 

the challenges caused by natural hazards. They have learned that evacuation planning needs to consider the 

carless, particularly the low-income population. There are many reasons why people may be carless; in 

many communities, particularly large cities, a significant portion of residents are carless due to 

unemployment or poverty. Access to transportation is of the utmost importance in the event of an 

evacuation, especially for the carless population. Having the capability to accurately assess both the 

population of the low-income individuals as well as their potential need is critical in the event of an 

evacuation. This information allows transportation planners and emergency managers to deliver the 

necessary services to those in need. Without accurate estimates, a deflated special needs population estimate 

can strain service quality and risk lives, whereas overestimating can allocate unnecessary resources to 

communities that can do without. Inventorying a jurisdiction’s carless population can be a daunting task. 

Using the copula concept and open-sourced data, the authors generated a synthetic population to identify 

the low-income population of Anne Arundel County, Maryland, and identify the geographical locations of 

those low-income people. 

Anne Arundel County is south of the City of Baltimore and west of the Chesapeake Bay. Its geo-spatial 

location combined with changing climatic conditions have made this county vulnerable to natural disasters 

like hurricanes, storm surges and flooding. There are four Public Use Micro Areas (PUMAs) in Anne 

Arundel County and each PUMA consists of several census tracts. In this project, the data from PUMA and 

census tract levels are combined with IRS data to generate the synthetic population. In short, the three 

sources of data used in this study are: (1) American Community Survey (ACS), (2) Decennial Census Data, 

and (3) IRS Income Data from tax returns. In this study, we fitted the data from Public Micro Area Samples 

(PUMS) by using the Archimedean family of copulas. The individual- and household-level data of PUMS 

have been merged to generate an individual-level dataset that includes all the attributes of the interest in 

fitting purpose. The authors picked nine distinct variables that are mostly used in transportation modeling 

from the PUMS data attributes and used them to estimate Clayton copula for four PUMAs within the county. 

Having fitted the copulas, a set of synthetic pseudo-observations can be drawn from the copula for any sub-

region of the PUMA of interest within Anne Arundel County. The sub-regions have been set to census 

tracts. The pseudo-observations have been transformed to real observations using the Inverse Cumulative 

Distribution functions for the attributes.  
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A binomial car-ownership model has been estimated for the State of Maryland and has been examined on 

synthetic populations obtained for different census tracts. Through the generated synthetic population and 

the simple car ownership model, a census tract level map has been generated. The resulting binomial model, 

which was based on the copula-generated synthetic population, successfully captured the expected 

dependency between car ownership status and income level of the individuals within the census tracts. From 

the result, it is observed that most of the people with no car are located within the northern part of the 

county. The percentage of people with no car varies between 2 percent and 11 percent, while the low-

income percentage varies between 12 to 44.  

Future research directions were also identified. If accurate data becomes available, the team intends to 

measure the accessibility and the network connectivity, to understand travel and behavioral pattern for 

individuals during emergency situations. This would help planners and policy makers better examine 

alternative scenarios, improve the infrastructure system, address the needs of underserved communities, 

and measure the accessibility of different population segments for effective and equitable evacuation 

planning. 
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2 INTRODUCTION  

Transportation engineers, planners, and policy makers are rigorously working to identify successful 

evacuation strategies, taking on one of the most challenging problems that today’s societies face. With the 

unprecedented increase in frequency and intensity of climatic disasters experienced in the U.S. and around 

the world, which cost thousands of lives each year, developing methods and tools that would help identify 

effective evacuation plans remains a crucial research need. The conditions under which evacuations happen 

and the communities that are impacted may vary significantly depending on many factors including, for 

example, the nature and intensity of the hazard, geography, socio-demographics, institutional structure, and 

the preparedness level. However, it is an unfortunate fact that in many cases low-income, typically carless 

residents are the ones that take the hardest hit as observed in hurricanes Katrina and Maria. Therefore, it is 

crucial to develop specific strategies and plans that consider the accessibility of vulnerable populations to 

shelters and whether they have the means to travel. 

Under an evacuation, people with personal cars typically choose to drive to destinations other than 

emergency shelters while low-income carless residents tend to rely on transit services, if provided, or 

personal connections. While not all low-income people lack access to personal vehicles, they form the 

majority of the public transportation users under normal conditions, and their transportation to shelters or 

safe zones needs to be provided by transit agencies under emergency conditions as well.  

While man-made hazards can be considered random, natural hazards are not random events. In order to 

prepare for a disaster, the potential of a location for a disaster needs to be determined, which involves a risk 

assessment procedure. The risk is typically defined as probability of a disaster times the consequence to the 

human environment. The estimation of consequences to the human environment requires information on 

geographic and demographic characteristics of the impacted areas. In this study, we focus on identifying 

the location of low-income residents in conjunction with car-ownership status in a target area for 

evacuation. The main objective is to identify low-income carless residents, who impose particular 

challenges in preparing for evacuation, as they solely rely on public transportation or other transportation 

services. A robust method is needed to identify low-income people with no access to a car in a geographical 

area with a medium to high risk of a natural hazard so that effective evacuation transportation services can 

be planned.  

The behavioral patterns and characteristics of people affect their car-ownership status and indirectly 

influence their decision to own a car. These effects can be captured by deriving the statistical correlation 

between characteristics of individuals and their car-ownership status by utilizing various data sources. It is 
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possible to identify carless people based on socio-demographic characteristics if strong correlation is 

obtained between their characteristics and car ownership status. The biggest challenge in this regard is that 

the characteristics of the whole population are usually either unavailable or inaccessible due to privacy and 

security reasons. Only the characteristics of a random sample are usually available for public use. In 

addition, these samples typically belong to a population that is larger than the geographic area that 

experiences the hazard, which usually is a small nest within the sampled area. An example is the Public 

Use Microdata Area (PUMA)-level information that is available from American Community Survey (ACS) 

data [1]. The PUMA-level information is gathered and updated annually for samples within each PUMA in 

the United States. Each PUMA consists of several areas with different families and income levels. Income 

values for each PUMA vary within a large range. An appropriate sublevel of PUMA that may reduce this 

variation is the census tract. Census tracts are geographically small enough to show low variability in 

income levels of their residents. 

Fortunately, census tracts are perfectly nested within PUMAs. However, census tracts are very small, and 

therefore very few of the samples from ACS observations might fall into each census tract. For example, 

some census tracts have only two observations, which is not adequate to represent the whole population. 

This shortcoming motivated studies to find a practical solution to generate a synthetic population that is 

highly representative of the characteristics of the people within a small area. In this study, we develop a 

statistical method to synthetically represent the population characteristics of a small geography so that the 

necessary information for evacuation planning, such as car ownership and income level, can be obtained. 

Specifically, we use the data from large-scale samples (e.g., ACS and IRS data) and generate a synthetic 

population for smaller subareas (census tract). The generated synthetic population is then used for 

estimating car ownership of low-income residents in the subareas. The mapping of the results for the car-

ownership model (i.e., the percentage of the people who do not own a car) can then be used in other 

transportation and optimization models to optimize evacuation logistics. 
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3 LITERATURE REVIEW 

In the context of sociodemographic data analysis, either the individual-level data are not available or only 

a sample from the total population is available. Therefore, a synthetic population needs to be generated for 

an area of interest to be used for various purposes such as microsimulation models, optimization models, 

and, as is the case for this study, evacuation planning. Synthetic populations are used commonly as input 

for activity-based models in which the travel patterns of individuals and their transportation choices are 

modeled at a granular level [1-8]. In addition, synthetic populations have been used in establishing measures 

of accessibility [9-11]. There are a few population-synthesizing approaches, which generate population 

while preserving the general characteristics of the population and mask the identity of the people for privacy 

purposes. One of the widely used methods to generate synthetic population is the Iterative Proportional 

Fitting (IPF) technique, which was first used by Beckman et al. (1996) in transportation studies. They 

utilized IPF for U.S census data structure [12], and implemented the method into TRANSIMS, a 

microsimulation modelling software (Choupani and Mamdoohi 2016) [13]. Although Beckman et al. (1996) 

were the pioneers who proposed IPF in transportation-related studies, the original method dates back to the 

1940s [14]. IPF updates the weights of the counts from a sample until the sum of the weights for all the 

attributes matches with the marginal values available for the area of the interest. This process includes 

fitting and allocation steps that consist of cross-tabulation, integer conversion, and selection. For detailed 

properties of the IPF, readers are referred to Ireland and Kullback (1968), Deming and Stephan (1940), 

Fienberg (1970), and Mosteller (1968) [14-17].  

Although the IPF method is well established in transportation studies, there are multiple problems that can 

obscure the validity of the synthetic population. One of the important issues is the generation of zero cells, 

zero marginals, and table sparsity which is caused by zero or small values. Another issue is that IPF is 

capable of synthesizing at one level [17-19]. To overcome the zero-marginal issue, the Iterative 

Proportional Updating (IPU) method was developed by Ye et al. (2009) [6]. A few statistically driven 

population-synthesizing techniques have been proposed, but none of them were as successful as their IPF 

competitor was. A Bayesian inference system method proposed by Schafer (1997) [20], combinatorial 

optimization method proposed by Openshaw and L. Rao (1995) [21] and Williamson et al. (1998) [22], 

simulated annealing proposed by Voas and Williamson (2000) [23], and Monte Carlo Markov Chain 

(MCMC) proposed by Farooq et al. (2013) [24], are among these methods. 

Another method that can be used in population synthesis is copulas. Copulas are robust methods that are 

useful in capturing the dependency between the variables of interest. While this unique feature of the 

copulas gained popularity among engineers, they have rarely been used in the transportation engineering 
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field. Kao et al. (2012) proposed a dependence preserving approach to synthesizing household 

characteristics by fitting multivariate normal distributions and modifying the covariance matrix [25]. Jeong 

et al. (2016) used copulas to validate the dependencies that have been captured by IPF methods [26]. Yang 

et al. (2019) used copula theory to predict the short-term passenger flow for high-speed railway [27]. 

In this study, we adopt the population synthesis method based on copula theory and first developed by 

Kaushik et al. (2019) [28]. The copula-based method allows the generation of synthetic agents at a very 

fine resolution (i.e., census tract level), which is particularly convenient for the problem of emergency 

evacuation. In what follows, the concept of copula will be described. Then, the methodology to obtain the 

synthetic population is described using data for Anne Arundel County, Maryland, at the census tract level. 

The synthetic population is then utilized to obtain the percentage of the people with low income. The people 

with no access to personal vehicles are also identified through a binomial logit model. 

4 DATA, MODEL SPECIFICATION, AND METHODOLOGY 

4.1 DATA DESCRIPTION 

4.1.1 Anne Arundel County Application  

Anne Arundel County in Maryland is located south of the City of Baltimore and west of the Chesapeake 

Bay. The county’s east border is entirely water, including the Chesapeake Bay and its numerous tributaries, 

as well as the various rivers, creeks, streams, and inlets, covering 29 percent of the county’s area. Because 

of its geo-spatial location combined with changing climatic conditions, the county is vulnerable to natural 

disasters like hurricanes, storm surges, and flooding. The county has experienced significant damage from 

tropical storm Isabel (September 2003), and hurricanes Ernesto (September 2006), Irene (August 2011), 

and Sandy (October 2012). The tragic examples of hurricanes Katrina (2005) and Maria (2017) that cost 

thousands of lives have taught that the evacuation of carless, typically low-income populations is crucial. 

Therefore, the need for a tool that could help planners, first responders, and others to ensure the safety of 

these vulnerable populations is essential. The population synthesis method we developed in this study is 

applied to Anne Arundel County as a foundation for such a tool.  

Figure 1 shows the median household income for census tracts within Anne Arundel County in the State of 

Maryland. Anne Arundel County includes four PUMAs that are almost equal in terms of area. Within each 

PUMA there are a few census tracts that are occupied by people with low median household income. The 
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number of observations for some of the census tracts is too low, and therefore the implementation or 

validation of any accessibility model would be obscured using these few observations. Copulas provide 

practical tools to generate a synthetic population provided that a sample of attributes of the interest and 

their marginal distributions for the study region are available. 

 

Figure 1:  Median income for different census tracts within Anne Arundel County 

4.1.2 Data Acquisition 

We began by acquiring the spatial data for the study area, consisting of three layers, each finer layer nested 

within the larger layer. The geographic structure and the resolution of the data are depicted in Figure 2. 
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Figure 2: Anne Arundel County; PUMAs and census tracts 

Anne Arundel County is divided into four PUMAs and each PUMA consists of several census tracts. 

Perfectly nested within each other, the structure of the data ensures that no data is mistakenly duplicated. 

In this study, the data from PUMA and census tract levels is combined with IRS data and used to generate 

the synthetic population, which to the best of authors’ knowledge have not been consolidated before for 

population synthesis purposes. The three sources of data consolidated in this study are: (1) American 

Community Survey (ACS), (2) Decennial Census Data, and (3) IRS Income Data from tax returns. 

The American Community Survey provides samples of information for Public Use Micro Areas (PUMAs), 

called Public Use Micro Samples (PUMS). PUMS consists of two different levels of the data: household 

level and individual level. These two levels of data share a common attribute (i.e., serial number) that is 

suitable for data integration purposes. The serial number indicates the attachment of each individual to a 

certain family. Each of the two data sets benefits from a weight column that determines the weight of the 

observation within the sample. The weights can be used to replicate the data, before the copula fitting 

process. The ACS suggests that for individual-level studies, the household-level data can be integrated with 

individual-level data, and then the integrated data can use the individual-level weights to replicate the 

observations. The attributes that are used in this study from the household level (HH) and individual level 

(IL) are listed below. 

1. NP: Number of person records following the housing record (HH), 

2. HHT: Household or family type (HH), 

3. HINCP: Household income (past 12 months) (HH), 

4. HUPAC: Household presence and age of children (HH), 
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5. WIF: Workers in family during the past 12 months (HH), 

6. AGEP: Age of the person (IL), 

7. SEX: Sex of the person (IL), 

8. ESR: Employment status of the person record (IL), 

9. RAC1P: Recorded detailed race code (IL). 

These variables can be fitted to a copula as a multivariate problem. The copula can capture the dependency 

between these nine variables and generate pseudo-observations from the estimated copula.  

As mentioned before, preserving the dependency between the variables is not enough for synthetic 

population generation. Another key piece of the puzzle is the Cumulative Distribution Function (CDF) of 

each variable. Inverse CDF of the variables transforms the pseudo-observations generated by the copula to 

real synthetic observations. In this study, two data sources have been used to construct CDF functions for 

the variables of interest. The first data is Decennial Census Data 2010, which includes tables required to 

generate CDF functions for six of the nine attributes mentioned above. These attributes are NP, HHT, 

HUPAC, AGEP, SEX, and RAC1P. Unfortunately, CDF functions for WIF and ESR are not currently 

available, and, therefore, the CDF for these two variables has been obtained from the PUMA samples. For 

income variable, which is the key attribute in identifying the low-income people, IRS data has been used 

to generate the CDF function. Figure 3 shows an example of data provided by the IRS that has been used 

to generate CDF functions for Income.  
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Figure 3: A sample of data used from IRS data to generate CDF functions for Income 

The IRS reports the number of returns for different types of income return forms. The report includes 

number of returns, number of single returns, number of joint returns, number of head of family returns, and 

number of dependents recorded. In order to obtain the CDF function for income, we doubled the record for 

the number of joint returns and summed with single, head of family, and dependents records. The last 

column in Figure 3 represents the calculated total returns for individual-level data. It should be noted that 

since the individual-level data has been fitted to the copulas, CDF function of the variables must be in 

individual level.  

Another issue associated with IRS data is due to geographical resolution: The data is reported for zip codes; 

therefore, it cannot directly be used for generating the CDFs for census tract levels. Fortunately, the Office 

of Policy Development and Research provides a crosswalk between zip code-level and census tract-level 

data that indicates the percentage of each zip code that belongs to a census tract. The data consist of the 

ratio for residential and business addresses. In the IRS data case, since individuals tend to file their tax 

return forms based on their residential addresses, we used the residential ratio as a base to generate income 

CDFs for different census tracts. Figure 4 shows an example of the crosswalk for two census tracts. 

 

 

Figure 4: A sample of crosswalks between ZIP code and census tracts 

4.2 METHODOLOGY  

The mathematician Abe Sklar first introduced the copula theory and its unique feature into probability 

theory in 1959.  Based on his definition, copulas are any kind of mathematical functions that perform a 

mapping between marginal distributions of a d- dimensional multivariate and their joint cumulative 

distribution: 
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𝐶: [0,1]𝑑⏟  
𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑑 𝑑𝑖𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑡𝑒 𝑑𝑎𝑡𝑎

→    [0,1]1 (1) 

Where C is a copula function. In other words, the inputs of any copula function are the marginal 

distributions of the multivariate data, and the output is a unique value between zero and one, which is the 

joint cumulative distribution of the random variables. Assuming that H is the joint cumulative distribution 

function (CDF) of any d-dimensional continuous random variable, Sklar Theorem states that: 

𝐻(𝑥1, 𝑥2, … , 𝑥𝑑) = 𝐶{𝐹1(𝑥1), 𝐹2(𝑥2),… , 𝐹𝑑(𝑥𝑑)}        𝑥1, 𝑥2, … , 𝑥𝑑 ∈  ℝ (2) 

Where Fd is the marginal distribution of the dth variable. By definition, an empirical copula can be 

constructed using the cumulative marginal distributions. For example, for a bivariate random variable, the 

empirical copula function can be written as follows: 

𝐶𝑛(𝑓1(𝑥1), 𝑓2(𝑥2)) =
1

𝑛
∑1(𝐹1(𝑥1) < 𝑓1,   𝐹2(𝑥2) < 𝑓2)

𝑛

𝑖=1

 (3) 

Sklar (1959) showed that, for any multivariate set of continuous variables, there exists at least one functional 

(parametric) form of the copula that can perform the mapping mentioned in Equation 1. Several families of 

copulas have been described in the literature; each family consists of multiple copula functions. Copulas 

that belong to one family usually share some common property. For example, Archimedean copulas admit 

an explicit formula, and allow modeling dependency of multivariate random variables with only one 

parameter (θ), which is also the reason for its popularity. Table 3 shows the three most popular Archimedean 

copulas that are also used in this study. 

Table 1: Archimedean three most popular Archimedean copulas 

Copula Multivariate Copula Cθ Range of the θ 

Clayton [max{𝑓1
−𝜃 + 𝑓2

−𝜃 +⋯𝑓𝑑
−𝜃 − 𝑑 + 1; 0}]

−1/𝜃
 𝜃 ∈  [−1,∞]\{0} 

Frank −
1

𝜃
log [1 +

∏ (exp(−𝜃𝑓1) − 1)
𝑑
𝑖=1

exp(−𝜃) − 1
] 𝜃 ∈ ℝ\{0} 

Gumble exp [−(∑ (− log 𝑓1)
𝜃

𝑑

𝑖=1
)

1/𝜃

] 𝜃 ∈ [1,∞) 
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There are deterministic approaches estimating the copula parameters for bivariate random samples that rely 

on the dependency measurements. For multivariate samples, maximum log-likelihood estimation is a 

popular method. For big sample data, however, maximum log-likelihood estimation usually converges to a 

solution, although this method is computationally exhausting. The estimated parameter for a copula 

preserves the dependency of the variables that exists within a multivariate dataset. In order to reduce the 

longitudinal dimension of the problem (i.e., the number of observations), one can write the log-likelihood 

in its weighted form. In this form, the repeated observations within the data appear only once in the log-

likelihood with their associated weights. Assuming that n* is the modified sample number after deleting 

the identical observations and ωi is the weight for each observation, one can write the log-likelihood 

function as follows: 

ℒ(𝜃) =
1

𝑛∗
∑𝜔𝑖 log[𝐶𝜃(�̂�𝑖)]

𝑛∗

𝑖=1

 (4) 

�̂� in the above equation is a vector that preserves the normalized rank of the variables within the sample, 

which is called pseudo-observation. The concept of the rank is utilized to introduce the marginal distribution 

of the data to the copula. The rank of the variables preserves the dependency of the variables for a 

multivariate problem. This is because the rank of the data remains unchanged under any strictly decreasing 

or increasing transformation function. The rank of the variables divided by the number of observations 

augmented by one results in the normalized rank for each realization within the sample. Note that the copula 

maps the normalized ranks of the variables to the joint distribution of the variables. 

Once the data is fitted to a copula, the fitted copula must be checked for goodness of fit. The Cramér-Von-

Mises statistic can be used to perform a bootstrap algorithm and calculate the P-values for estimated 

parameters. The initial step of the bootstrap method is to fit the available data to a targeted copula. The 

Cramér-Von-Mises statistic is then constructed and calculated as the sum of squares for differences between 

empirical and fitted copulas (Sn). This procedure is repeated for k times (a statistically sufficient times 

needs to be selected), each time with the data obtained by sampling with replacement from the initial 

dataset. The bootstrap P-value can be calculated from the following equation (for a 95% confidence 

interval): 

𝑃 =
1

𝐾 + 1
[∑1(𝑆𝑛

∗ ≥ 𝑆n) + 0.5

𝐾

𝑖=1

] (5) 
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Once a copula has passed the statistical test for the goodness of fit, there are statistical methods to generate 

synthetic data from the fitted copula. It should be noted that estimated copulas produce pseudo-

observations, which are realizations from the cumulative distribution function of the population.  

The last piece of the problem that completes the procedure is the utilization of the inverse cumulative 

distribution function of each variable. Each pseudo-observation drawn from the copula is transformed into 

a real synthetic observation by using the inverse cumulative distribution function of that variable. Within 

the mentioned procedure, the copula preserves the dependency of the variables, while the CDF of the 

variables evokes the distribution and realization of the observations, independent of the copula. Figure 6 

shows the flowchart of the entire procedure for generating the synthetic population. The process starts with 

a sample of observations as input. Then, ranks of variables in the data set are determined followed by 

computation of pseudo-observations. The pseudo-observations are then fitted to a copula and the goodness 

of fit test is performed using a bootstrapping algorithm. After the test, n observations are drawn from the 

pseudo-observations to represent the population and they are transformed into a synthetic population using 

CDFs.  

 

 

Figure 5: Flowchart of the population-synthesizing algorithm 
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4.3 MODEL ESTIMATION 

4.3.1 Identification of Low-income Carless People 

The pseudo-observations calculated for the nine input variables from ACS have been fitted to the four well-

known Archimedean copulas (i.e., Clayton, Gumbel, Frank, and Joe copulas). The Clayton copula showed 

the lowest test statistic, and other than the Frank copula, p-values for all other copulas were significant 

within the 99% confidence interval. Therefore, we used the Clayton copula for population synthesis. The 

results of the Clayton copula used to generate the synthetic population are shown in Table 1. There are 

identical observations within the sample which are usually referred to as "ties." Existence of the ties within 

the sample needs to be accounted for in the calculation of the rank and pseudo-observations. The rank for 

ties can be set to the minimum, maximum, or average of the index assigned to the identical observations. 

In this study, the ranks of the variables have been obtained by replacing the index set of the ties with their 

mean value, and the pseudo-observations have been calculated accordingly. This method keeps the 

weighted distribution of the pseudo-observations close to the distribution of the real observations.  

Table 2: Estimated parameters for Clayton copula for census tracts within Anne Arundel County 

PUMA Copula Statistics P-value Estimated Parameter (θ) 

1201 Clayton 156.74 0.9995 0.30082 

1202 Clayton 139.65 0.9995 0.33478 

1203 Clayton 173.25 0.9995 0.28861 

1204 Clayton 158.7 0.9995 0.29214 

 

Having obtained the estimation parameters, we have generated a set of pseudo-observations for each census 

tract. The size of each set is equal to the population of the corresponding census tract. The CDF functions, 

produced by using 2010 Decennial Census Data and IRS Income Return Data, have been used to obtain the 

real synthetic population. The distribution of the synthetic population has been compared with that of the 

real data from Decennial Census and IRS. The error is found to be statistically zero within the 99% 

confidence interval.  

Once the synthetic population is ready, different models may benefit from the available anonymous data 

for the entire population of a census tract. These data are suitable for feeding input into activity-based 
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models, car-ownership, and other models. In this study, we have used a simple binomial logit model using 

Biogeme software to find the percentage of people who do not own a personal car to use as input for an 

example of natural hazard evacuation planning. The binomial model has been estimated using the 2017 

National Household Travel Survey (NHTS) data for the State of Maryland, and the estimated model has 

been applied to the synthetic population. The authors evaluated a series of binomial models to find the best 

attributes that statically describe the car-ownership status of the people. Within any binomial model, there 

are two choices to make. The choices in our model have been set to no-car and 1+ car. The base choice 

(i.e., no-car) has been set to zero, which designates zero utility to no-car choice. The results of the initial 

models showed a high correlation between household size and attributes such as number of children and 

number of workers in the family. Therefore, we eliminated household size from the final model. In addition, 

income groups and family race have been aggregated to a fewer clusters because of the collinearity issue 

observed for some of the clusters. Equation 6 expresses the final utility function defined for the choice of 

having access to a personal car. 

𝑈 = 𝛽0 + 𝛽𝐶𝐻1 + 𝛽𝑖𝑛𝑐2 + 𝛽𝑖𝑛𝑐3 + 𝛽𝑖𝑛𝑐456 + 𝛽𝑅1 + 𝛽𝑅2 + 𝛽𝑊𝐼𝐹 (6) 

Table 2 shows the results for the estimated binomial logit model, and associated statistical test for a 98% 

confidence interval. 

Table 3: Results of binomial model used to estimate car ownership 

Name Value Robust std. err Robust t-test P-value significance 

ASCN 0.00 Fixed    

ASCC 0.583 0.180 3.24 0.00  

CH 1.01 0.802 1.26 0.21 * 

INC2 1.55 0.369 4.20 0.00  

INC3 3.65 0.468 7.81 0.00  

INC4 3.93 0.588 6.68 0.00  

RAC1 -1.35 0.562 -2.40 0.02  

RAC2 -2.06 0.795 -2.59 0.01  
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Name Value Robust std. err Robust t-test P-value significance 

WIF 0.745 0.262 2.85 0.00  

Note: ASCN and ASCC: Alternative specific Constant for no-car and 1+car(s), respectively. 

In Table 2, CH stands for the number of children in the family. INC2, INC3, and INC4 are dummy variables 

indicating the income class of each individual. The intra-thresholds between these three categories are 

$50,000 and $75,000 (dollars per year of family income). The base cluster is INC1, which indicates people 

with a family income of less than 25,000 $/year. RAC1 is a dummy variable that indicates if the individual 

belongs to a black family. RAC2 is a variable of the same type for Asian families. The aggregation of races 

other than Black and Asian is the base cluster for family race and dropped from the utility function to 

prevent a multi-collinearity issue. It can be seen from Table 2 that having more children imposes an 

additional utility to the choice of having a car, which is logical. As income grows, the utility of having car 

also grows. After the Asian race, being a black family imposes negative utility to the choice of owning a 

car. As the number of workers grows the utility of having a car grows positively as well. 

Having predicted the car ownership model, the next step is to predict the probability of having one 

or more than one car for each individual within the synthetic population by using Equation 7.  

𝑃(𝑈 = 1|𝑥) =
𝑒𝑈1

1 + 𝑒𝑈1
 (7) 

This probability has been aggregated over the entire population to find the percentage of the people who do 

not have access to a personal car. Figure 5 illustrates the car ownership and income level of the people 

living in different census tracts within Anne Arundel County. 
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Figure 6: Car ownership and income level for census tracts within Anne Arundel County 

It is clear from the figure that as the percentage of low-income people increases within a census tract, the 

percentage of people with no access to car also increases. We observe that most of the people with no car 

are located within the northern part of the county, which is adjacent to the southern area of Baltimore City. 

The percentage of people with no car varies between 2 percent and 11 percent, while the low-income 

percentage varies between 12 to 44. The percentage of low-income people we obtained is higher than the 

real percentages. The reason for this discrepancy is our simplifying assumption when defining low-income 

households: We assumed that people with an annual salary of less than 25,000 dollars belong to the low-

income category, but the definition of low income is more complex, involving various thresholds by family 

types, e.g., number of people in the household and employment statuses. In addition, the available criteria 

for defining low-income households in the existing standards are used to identify the income status of a 

family rather than individuals. Since we are interested in the individual-level threshold, we assumed a single 

value of 25,000 dollars per year as a breakpoint to define a low-income individual. 
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5 CONCLUSIONS 

This study presented a copula-based population synthesizer that interactively utilizes triangulated data to 

generate populations that maintain the dependency structure and the marginals of the real population. 

Within the proposed algorithm, the triangulated data is fitted to a copula, which preserves the dependency 

structure among different attributes of the dataset. This dependency can be defined as the hidden correlation 

that exists between the different variables of the multivariate problem. By fitting the available data to a 

copula one can preserve this correlation and produce new synthetic observations from the fitted copula. In 

this study, we fitted the data from Public Micro Area Samples (PUMS) to the Archimedean family of 

copulas. The individual- and household-level data have been merged to generate an individual level dataset 

that includes all the attributes of the interest for fitting purpose. Nine distinct variables that are mostly used 

in transportation modeling were picked from the PUMS data attributes. These nine variables have been 

used to estimate the Clayton copula for four Public Use Micro Areas (PUMA) within Anne Arundel County. 

The results of the estimation were very promising, and the validity of the estimation has been proved with 

robust statistical evidence.  

Having fitted the copulas, a set of synthetic pseudo-observations can be drawn from the copula for any 

subregion of the PUMA of interest within Anne Arundel County. In this study, we set the subregions to 

census tracts. We transformed the pseudo-observations to real observations using the Inverse Cumulative 

Distribution functions for the attributes. This success in generating the synthetic population has been 

accompanied by a simple transportation application. A binomial car-ownership model has been estimated 

for the State of Maryland and examined on synthetic populations obtained for different census tracts. 

Through the generated synthetic population and the simple car ownership model, a census tract level map 

has been generated. The binomial model results, which were based on the copula-generated synthetic 

population, successfully captured the expected dependency between car-ownership status and income level 

of the individuals within the census tracts. 

Despite these findings, challenges remain regarding synthetic population and associated analysis within the 

transportation modeling context. For instance, an accurate resemblance to the population of the census tracts 

requires replacing the CDF functions of the attributes from PUMS (e.g., employment status of the 

individuals and the number of workers in the household) with the marginals that are accurately obtained 

from Decennial surveys or the Department of Labor Statistics. Unfortunately, these data either are not 

available or not in suitable classification order to be used jointly with PUMS data. With updated data in 



23 

 

2020, it is possible to see more attributes recorded within the Decennial Census which leads to increased 

accuracy of the copula-based synthetic population.  

As accurate data becomes available, future research could focus on using the copula-based synthetic 

population to create models to measure the accessibility and connectivity of areas that are, for example, 

majority low-income, disabled, or carless people. In addition, the proposed population synthesizing method 

can provide reliable and granular-level input for activity-based models that are particularly developed to 

understand the travel and behavioral pattern for individuals within large cities and small communities as 

well. These studies would help planners and policy makers better examine alternative scenarios to improve 

the infrastructure, address the needs of underserved communities, and measure the accessibility of different 

population segments for effective and equitable evacuation planning. 

 

The report is based on the paper (20-05768) “A Statistical Approach to Synthetic Population 

Generation as a Basis for Carless Evacuation Planning” (20-0576 8) by Mohammad Nejad, 

Sevgi Erdogan, and Cinzia Cirillo presented at the 99th TRB Annual Meeting, Washington, 

D.C., January 2020. 
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